Java-DerivativeStructure внутри библиотеки Apache Math.Commons

У меня возникли проблемы с реализацией более сложной формы класс DerivativeStructure, предоставленный математической библиотекой Apache Commons. Я написал две программы, пробную и настоящую. Проблема, с которой я столкнулся, связана с моей реальной программой. Я думаю, что можно обойти проблему через интерфейс.

Этот пост довольно длинный, пожалуйста, посмотрите проблему, которую я представил в конце поста (я добавил дополнительную информацию, чтобы точно определить проблему в конце поста).

Первая программа проста и находит корни функции sin(x).

import java.util.TreeSet;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.analysis.solvers.*;
import org.apache.commons.math3.exception.DimensionMismatchException;

public class Test5 {

    public static void main(String args[]) {
        NewtonRaphsonSolver test = new NewtonRaphsonSolver(1E-10);

        UnivariateDifferentiableFunction f = new UnivariateDifferentiableFunction() {

            public double value(double x) {
                return Math.sin(x);
            }

            public DerivativeStructure value(DerivativeStructure t) throws
                    DimensionMismatchException {
                return t.sin();
            }
        };

        double EPSILON = 1e-6;
        TreeSet<Double> set = new TreeSet<>();
        for (int i = 1; i <= 5000; i++) {
            set.add(test.solve(1000, f, i, i + EPSILON));
        }
        for (Double s : set) {
            if (s > 0) {
                System.out.println(s);
            }
        }

    }
}

Внутри этой программы класс DerivativeStructure формируется через

UnivariateDifferentiableFunction f = new UnivariateDifferentiableFunction() {

            public double value(double x) {
                return Math.sin(x);
            }

            public DerivativeStructure value(DerivativeStructure t) throws
                    DimensionMismatchException {
                return t.sin();
            }
        };

Это только «прямо», потому что я могу применить `return t.sin();' внутри общедоступного метода DerivativeStructure.

Вторая программа не может напрямую ссылаться на t.sin(x) или любое значение t.function(), потому что это пользовательская функция, которая разрабатывается позже в программе. Моя попытка написать вторую программу включает

import java.util.TreeSet;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.
        UnivariateDifferentiableFunction;
import org.apache.commons.math3.analysis.solvers.*;
import org.apache.commons.math3.exception.DimensionMismatchException;

public class SiegelNew{
    public static void main(String[] args){
        SiegelMain();
    }

    // Main method
    public static void SiegelMain() {

        NewtonRaphsonSolver test = new NewtonRaphsonSolver(1E-10);
        UnivariateDifferentiableFunction f = new 
            UnivariateDifferentiableFunction() {

            public double value(double x) {
                return RiemennZ(x, 4);
            }

            UnivariateFunction func = (double x) -> RiemennZ(x, 4);

            public DerivativeStructure value(DerivativeStructure t) throws DimensionMismatchException {
                //I have no idea what to write here
                return new DerivativeStructure(1, 1, 0, func.value(x)));
            }

        };
        System.out.println("Zeroes inside the critical line for " +
                "Zeta(1/2 + it). The t values are referenced below.");
        System.out.println();
    double EPSILON = 1e-6;
        TreeSet<Double> set = new TreeSet<>();
        for (int i = 1; i <= 5000; i++) {
            set.add(test.solve(1000, f, i, i+1));
        }
        for (Double s : set) {
            if(s > 0)
            System.out.println(s);
        }
    }

    /**
     * Needed as a reference for the interpolation function.
    */
    public static interface Function {
    public double f(double x);
    }

    /**
     * The sign of a calculated double value.
     * @param x - the double value.
     * @return the sign in -1,  1, or 0 format.
    */
    private static int sign(double x) {
    if (x < 0.0)
            return -1;
        else if (x > 0.0)
            return 1;
        else
            return 0;
    }

    /**
     * Finds the roots of a specified function through interpolation.
     * @param f - the function
         * @param lowerBound - the lower bound of integration.
         * @param upperBound - the upper bound of integration.
         * @param step - the step for dx in [a:b]
     * @return the roots of the specified function.
    */
    public static void findRoots(Function f, double lowerBound,
                  double upperBound, double step) {
    double x = lowerBound, next_x = x;
    double y = f.f(x), next_y = y;
    int s = sign(y), next_s = s;

    for (x = lowerBound; x <= upperBound ; x += step) {
        s = sign(y = f.f(x));
        if (s == 0) {
        System.out.println(x);
        } else if (s != next_s) {
        double dx = x - next_x;
        double dy = y - next_y;
        double cx = x - dx * (y / dy);
        System.out.println(cx);
        }
        next_x = x; next_y = y; next_s = s;
    }
    }

    /**
     * Riemann-Siegel theta function using the approximation by the 
         * Stirling series.
     * @param t - the value of t inside the Z(t) function.
     * @return Stirling's approximation for theta(t).
    */
    public static double theta (double t) {
        return (t/2.0 * Math.log(t/(2.0*Math.PI)) - t/2.0 - Math.PI/8.0
                + 1.0/(48.0*Math.pow(t, 1)) + 7.0/(5760*Math.pow(t, 3)));
    }

    /**
     * Computes Math.Floor of the absolute value term passed in as t.
     * @param t - the value of t inside the Z(t) function.
     * @return Math.floor of the absolute value of t.
    */
    public static double fAbs(double t) {
        return Math.floor(Math.abs(t));

    }

    /**
     * Riemann-Siegel Z(t) function implemented per the Riemenn Siegel 
         * formula. See http://mathworld.wolfram.com/Riemann-SiegelFormula.html 
         * for details
     * @param t - the value of t inside the Z(t) function.
         * @param r - referenced for calculating the remainder terms by the
         * Taylor series approximations.
     * @return the approximate value of Z(t) through the Riemann-Siegel
         * formula
    */
    public static double RiemennZ(double t, int r) {

        double twopi = Math.PI * 2.0; 
        double val = Math.sqrt(t/twopi);
        double n = fAbs(val);
        double sum = 0.0;

        for (int i = 1; i <= n; i++) {
          sum += (Math.cos(theta(t) - t * Math.log(i))) / Math.sqrt(i);
        }
        sum = 2.0 * sum;

        double remainder;
        double frac = val - n; 
        int k = 0;
        double R = 0.0;

        // Necessary to individually calculate each remainder term by using
        // Taylor Series co-efficients. These coefficients are defined below.
        while (k <= r) {
            R = R + C(k, 2.0*frac-1.0) * Math.pow(t / twopi, 
                    ((double) k) * -0.5);
            k++;
        }

        remainder = Math.pow(-1, (int)n-1) * Math.pow(t / twopi, -0.25) * R;
        return sum + remainder;
    }

    /**
     * C terms for the Riemann-Siegel formula. See 
         * https://web.viu.ca/pughg/thesis.d/masters.thesis.pdf for details.
         * Calculates the Taylor Series coefficients for C0, C1, C2, C3, 
         * and C4. 
     * @param n - the number of coefficient terms to use.
         * @param z - referenced per the Taylor series calculations.
     * @return the Taylor series approximation of the remainder terms.
    */
    public static double C (int n, double z) {
        if (n==0) 
            return(.38268343236508977173 * Math.pow(z, 0.0) 
            +.43724046807752044936 * Math.pow(z, 2.0) 
            +.13237657548034352332 * Math.pow(z, 4.0) 
            -.01360502604767418865 * Math.pow(z, 6.0) 
            -.01356762197010358089 * Math.pow(z, 8.0) 
            -.00162372532314446528 * Math.pow(z,10.0) 
            +.00029705353733379691 * Math.pow(z,12.0) 
            +.00007943300879521470 * Math.pow(z,14.0) 
            +.00000046556124614505 * Math.pow(z,16.0) 
            -.00000143272516309551 * Math.pow(z,18.0) 
            -.00000010354847112313 * Math.pow(z,20.0) 
            +.00000001235792708386 * Math.pow(z,22.0) 
            +.00000000178810838580 * Math.pow(z,24.0) 
            -.00000000003391414390 * Math.pow(z,26.0) 
            -.00000000001632663390 * Math.pow(z,28.0) 
            -.00000000000037851093 * Math.pow(z,30.0) 
            +.00000000000009327423 * Math.pow(z,32.0) 
            +.00000000000000522184 * Math.pow(z,34.0) 
            -.00000000000000033507 * Math.pow(z,36.0) 
            -.00000000000000003412 * Math.pow(z,38.0)
            +.00000000000000000058 * Math.pow(z,40.0) 
            +.00000000000000000015 * Math.pow(z,42.0)); 
        else if (n==1) 
            return(-.02682510262837534703 * Math.pow(z, 1.0) 
            +.01378477342635185305 * Math.pow(z, 3.0) 
            +.03849125048223508223 * Math.pow(z, 5.0) 
            +.00987106629906207647 * Math.pow(z, 7.0) 
            -.00331075976085840433 * Math.pow(z, 9.0) 
            -.00146478085779541508 * Math.pow(z,11.0) 
            -.00001320794062487696 * Math.pow(z,13.0) 
            +.00005922748701847141 * Math.pow(z,15.0) 
            +.00000598024258537345 * Math.pow(z,17.0) 
            -.00000096413224561698 * Math.pow(z,19.0) 
            -.00000018334733722714 * Math.pow(z,21.0) 
            +.00000000446708756272 * Math.pow(z,23.0) 
            +.00000000270963508218 * Math.pow(z,25.0) 
            +.00000000007785288654 * Math.pow(z,27.0)
            -.00000000002343762601 * Math.pow(z,29.0) 
            -.00000000000158301728 * Math.pow(z,31.0) 
            +.00000000000012119942 * Math.pow(z,33.0) 
            +.00000000000001458378 * Math.pow(z,35.0) 
            -.00000000000000028786 * Math.pow(z,37.0) 
            -.00000000000000008663 * Math.pow(z,39.0) 
            -.00000000000000000084 * Math.pow(z,41.0) 
            +.00000000000000000036 * Math.pow(z,43.0) 
            +.00000000000000000001 * Math.pow(z,45.0)); 
      else if (n==2) 
            return(+.00518854283029316849 * Math.pow(z, 0.0) 
            +.00030946583880634746 * Math.pow(z, 2.0) 
            -.01133594107822937338 * Math.pow(z, 4.0) 
            +.00223304574195814477 * Math.pow(z, 6.0) 
            +.00519663740886233021 * Math.pow(z, 8.0) 
            +.00034399144076208337 * Math.pow(z,10.0) 
            -.00059106484274705828 * Math.pow(z,12.0) 
            -.00010229972547935857 * Math.pow(z,14.0) 
            +.00002088839221699276 * Math.pow(z,16.0) 
            +.00000592766549309654 * Math.pow(z,18.0) 
            -.00000016423838362436 * Math.pow(z,20.0) 
            -.00000015161199700941 * Math.pow(z,22.0) 
            -.00000000590780369821 * Math.pow(z,24.0) 
            +.00000000209115148595 * Math.pow(z,26.0) 
            +.00000000017815649583 * Math.pow(z,28.0) 
            -.00000000001616407246 * Math.pow(z,30.0) 
            -.00000000000238069625 * Math.pow(z,32.0) 
            +.00000000000005398265 * Math.pow(z,34.0) 
            +.00000000000001975014 * Math.pow(z,36.0) 
            +.00000000000000023333 * Math.pow(z,38.0) 
            -.00000000000000011188 * Math.pow(z,40.0) 
            -.00000000000000000416 * Math.pow(z,42.0) 
            +.00000000000000000044 * Math.pow(z,44.0) 
            +.00000000000000000003 * Math.pow(z,46.0)); 
      else if (n==3) 
            return(-.00133971609071945690 * Math.pow(z, 1.0) 
            +.00374421513637939370 * Math.pow(z, 3.0) 
            -.00133031789193214681 * Math.pow(z, 5.0) 
            -.00226546607654717871 * Math.pow(z, 7.0) 
            +.00095484999985067304 * Math.pow(z, 9.0) 
            +.00060100384589636039 * Math.pow(z,11.0) 
            -.00010128858286776622 * Math.pow(z,13.0) 
            -.00006865733449299826 * Math.pow(z,15.0) 
            +.00000059853667915386 * Math.pow(z,17.0) 
            +.00000333165985123995 * Math.pow(z,19.0)
            +.00000021919289102435 * Math.pow(z,21.0) 
            -.00000007890884245681 * Math.pow(z,23.0) 
            -.00000000941468508130 * Math.pow(z,25.0) 
            +.00000000095701162109 * Math.pow(z,27.0) 
            +.00000000018763137453 * Math.pow(z,29.0) 
            -.00000000000443783768 * Math.pow(z,31.0) 
            -.00000000000224267385 * Math.pow(z,33.0) 
            -.00000000000003627687 * Math.pow(z,35.0) 
            +.00000000000001763981 * Math.pow(z,37.0) 
            +.00000000000000079608 * Math.pow(z,39.0) 
            -.00000000000000009420 * Math.pow(z,41.0) 
            -.00000000000000000713 * Math.pow(z,43.0) 
            +.00000000000000000033 * Math.pow(z,45.0) 
            +.00000000000000000004 * Math.pow(z,47.0)); 
      else 
            return(+.00046483389361763382 * Math.pow(z, 0.0) 
            -.00100566073653404708 * Math.pow(z, 2.0) 
            +.00024044856573725793 * Math.pow(z, 4.0) 
            +.00102830861497023219 * Math.pow(z, 6.0) 
            -.00076578610717556442 * Math.pow(z, 8.0) 
            -.00020365286803084818 * Math.pow(z,10.0) 
            +.00023212290491068728 * Math.pow(z,12.0) 
            +.00003260214424386520 * Math.pow(z,14.0) 
            -.00002557906251794953 * Math.pow(z,16.0) 
            -.00000410746443891574 * Math.pow(z,18.0) 
            +.00000117811136403713 * Math.pow(z,20.0) 
            +.00000024456561422485 * Math.pow(z,22.0) 
            -.00000002391582476734 * Math.pow(z,24.0) 
            -.00000000750521420704 * Math.pow(z,26.0) 
            +.00000000013312279416 * Math.pow(z,28.0) 
            +.00000000013440626754 * Math.pow(z,30.0) 
            +.00000000000351377004 * Math.pow(z,32.0) 
            -.00000000000151915445 * Math.pow(z,34.0) 
            -.00000000000008915418 * Math.pow(z,36.0) 
            +.00000000000001119589 * Math.pow(z,38.0) 
            +.00000000000000105160 * Math.pow(z,40.0) 
            -.00000000000000005179 * Math.pow(z,42.0) 
            -.00000000000000000807 * Math.pow(z,44.0) 
            +.00000000000000000011 * Math.pow(z,46.0) 
            +.00000000000000000004 * Math.pow(z,48.0));
    }     
}

Проблема со второй программой связана с

UnivariateDifferentiableFunction f = new 
            UnivariateDifferentiableFunction() {

            public double value(double x) {
                return RiemennZ(x, 4);
            }

            UnivariateFunction func = (double x) -> RiemennZ(x, 4);

            public DerivativeStructure value(DerivativeStructure t) throws DimensionMismatchException {
                //I have no idea what to write here
                return new DerivativeStructure(1, 1, 0, func.value(x)));
            }

        };

Который конкретно занимается реализацией

public DerivativeStructure value(DerivativeStructure t) throws DimensionMismatchException {
                //I have no idea what to write here
                return new DerivativeStructure(1, 1, 0, func.value(x)));
            }

В библиотеке Apache Commons Math следующая документация указана в конце этого документа. страница.

Пользователь может создать реализацию интерфейса UnivariateDifferentiableFunction несколькими способами. Первый способ состоит в том, чтобы просто написать его напрямую, используя соответствующие методы из DerivativeStructure для вычисления сложения, вычитания, синуса, косинуса... Часто это довольно просто, и нет необходимости запоминать правила дифференцирования: пользовательский код представляет только сама функция, дифференциалы будут вычисляться автоматически под капотом. Второй метод заключается в написании классической UnivariateFunction и передаче ее в существующую реализацию интерфейса UnivariateFunctionDifferentiator для получения дифференцированной версии той же функции. Первый метод больше подходит для небольших функций, для которых пользователь уже контролирует весь базовый код. Второй метод больше подходит либо для больших функций, которые было бы громоздко писать с помощью API DerivativeStructure, либо для функций, для которых пользователь не имеет контроля над полным базовым кодом (например, функции, вызывающие внешние библиотеки).

Есть ли способ обойти эту проблему путем написания, а затем реализации DerivativeStructure с помощью интерфейса?


person Axion004    schedule 10.09.2015    source источник


Ответы (1)


Я точно не знаю, что такое RiemennZ, но, похоже, это какое-то семейство функций. В этом случае вы должны реализовать его таким образом, чтобы получить новый UnivariateDifferentiableFunction для каждого значения второго параметра:

public static UnivariateDifferentiableFunction RiemennZ(int r) {
  return new UnivariateDifferentiableFunction() {
    double value(double t) {
       /* YOUR CODE FROM ABOVE */
    }
    public DerivativeStructure value(DerivativeStructure t) {
       /* YOUR CODE FROM ABOVE BUT AS A DS */
    }
}

Это называется функцией высшего порядка и довольно часто встречается в других языках. Вы должны предоставить реализацию DerivativeStructure только для аргумента, который вы действительно хотите различать.

person choeger    schedule 11.09.2015
comment
Написание кода в виде DS внутри публичного значения DerivativeStructure (DerivativeStructure t) чрезвычайно сложно. Мой код возвращает двойное значение для RiemennZ(x, 4) и ссылается на несколько методов, которые ссылаются на ряд Тейлора. Согласно последнему абзацу Apache, можно ссылаться на RiemennZ(x, 4) через интерфейс UnivariateFunctionDifferentiator. - person Axion004; 11.09.2015